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Abstract

Trajectory prediction is essential for autonomous vehicles (AVs) to plan correct and
safe driving behaviors. While many prior works aim to achieve higher prediction
accuracy, few study the adversarial robustness of their methods. To bridge this gap,
we propose to study the adversarial robustness of data-driven trajectory prediction
systems. We devise an optimization-based adversarial attack framework that
leverages a carefully-designed differentiable dynamic model to generate realistic
adversarial trajectories. Empirically, we benchmark the adversarial robustness of
state-of-the-art prediction models and show that our attack increases the prediction
error for both general metrics and planning-aware metrics by more than 50% and
37%. We also show that our attack can lead an AV to drive off road or collide
into other vehicles in simulation. Finally, we demonstrate how to mitigate the
adversarial attacks using an adversarial training scheme.1.

1 Introduction

Trajectory forecasting is an integral part of modern autonomous vehicle (AV) systems. It allows
an AV system to anticipate the future behaviors of other nearby road users and plan its actions
accordingly. Recent data-driven methods have shown remarkable performances on motion forecasting
benchmarks [1–7]. At the same time, for a safety-critical system like an AV, it is as essential for its
components to be high-performing as it is for them to be reliable and robust. But few existing work
have considered the robustness of these trajectory prediction models, especially when they are subject
to deliberate adversarial attacks.

A typical adversarial attack framework consists of a threat model, i.e., a function that generates “real-
istic” adversarial samples, adversarial optimization objectives, and ways to systematically determine
the influence of the attacks. However, a few key technical challenges remain in devising such a
framework for attacking trajectory prediction models.

First, the threat model must synthesize adversarial trajectory samples that are 1) feasible subject to
the physical constraints of the real vehicle (i.e. dynamically feasible), and 2) close to the nominal
trajectories. The latter is especially important as a large alteration to the trajectory history conflates
whether the change in future predictions is due to the vunerability of the prediction model or more
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Figure 1: An example of attack scenarios on trajectory prediction. By driving along the crafted
adversarial history trajectory, the adverial agent misleads the prediction of the AV systems for both
itself and the other agent. As a consequence, the AV planning based on the wrong prediction results
in a collision.

fundamental changes to the meaning of the history. To this front, we propose an attack method that
uses a carefully designed differentiable dynamic model to generate adversarial trajectories that are
both effective and realistic. Furthermore, through a gradient-based optimization process, we can
generate adversarial trajectories efficiently and customize the adversarial optimization objectives to
create different safety-critical scenarios.

Second, not all trajectory prediction models react to attacks the same way. Features that are beneficial
in benign settings may make a model more vulnerable to adversarial attacks. We consider two essential
properties of modern prediction models: (1) motion property, which captures the influence of past
agent states over future states; and (2) social property, which captures how the state of each agent
affects others. Existing prediction models have proposed various architectures to explicitly models
these properties either in silo [3] or jointly [4]. Specifically, we design an attack framework that
accounts for the above properties. We show that our novel attack framework can exploit these design
choices. As illustrated in Figure 1, by only manipulating the history trajectory of the adversarial
agent, we are able to mislead the predicted future trajectory for the adversarial agent (i.e. incorrect
prediction for left turning future trajectory of red car in Figure 1-right). Furthermore, we are able to
mislead the prediction for other agent’s behavior (i.e. turning right to turning left for the yellow car
in Figure 1-right). During the evaluation, we could evaluate these two goals respectively. It helps us
fine-grained diagnose vulnerability of different models.

Finally, existing prediction metrics such as average distance error (ADE) and final distance error
(FDE) only measure errors of average cases and are thus too coarse for evaluating the effectiveness of
adversarial attacks. They also ignore the influence of prediction errors in downstream planning and
control pipelines in an AV stack. To this end, we incorporate various metrics with semantic meanings
such as off-road rates, miss rates and planning-aware metrics [8] to systematically quantify the
effectiveness of the attacks on prediction. We also conduct end-to-end attack on a prediction-planning
pipeline by simulating the driving behavior of an AV in a close-loop manner. We demonstrate that
the proposed attack can lead to both emergency brake and various of collisions of the AV.

We benchmark the adversarial robustness of state-of-the-art trajectory prediction models [4, 3] on
the nuScenes dataset [9]. We show that our attack can increase prediction error by 50% and 37% on
general metrics and planning-aware metrics, respectively. We also show that adversarial trajectories
are realistic both quantitatively and qualitatively. Furthermore, we demonstrate that the proposed
attack can lead to severe consequences in simulation. Finally, we explore the mitigation methods with
adversarial training using the proposed adversarial dynamic optimization method (AdvDO). We find
that the model trained with the dynamic optimization increase the adversarial robustness by 54%.
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2 Related works

Trajectory Prediction. Modern trajectory prediction models are usually deep neural networks that
take state histories of agents as input and generate their plausible future trajectories. Accurately
forecasting multiagent behaviors requires modeling two key properties: (1) motion property, which
captures the influence of past agent states over future states; (2) social property, which captures how
the state of each agent affects others. Most prior works model the two properties separately [2, 3, 10,
11, 7]. For example, a representative method Trajactron++ [3] summarizes temporal and inter-agent
features using a time-sequence model and a graph network, respectively. But modeling these two
properties in silo ignores dependencies across time and agents. A recent work Agentformer [4]
introduced a joint model that allows an agent’s state at one time to directly affect another agent’s state
at a future time via a transformer model.

At the same time, although these design choices for modeling motion and social properties may be
beneficial in benign cases, they might affect a model’s performance in unexpected ways when under
adversarial attacks. Hence we select these two representative models [3, 4] for empirical evaluation.

3 Problem Formulation and Challenges

In this section, we introduce the trajectory prediction task and then describe the threat model and
assumptions for the attack and challenges.

Trajectory Prediction Formulation. In this work, we focus on the trajectory prediction task. The
goal is to model the future trajectory distribution of N agents conditioned on their history states
and other environment context such as maps. More specifically, a trajectory prediction model takes
a sequence of observed state for each agent at a fixed time interval ∆t, and outputs the predicted
future trajectory for each agent. For observed time steps t ≤ 0, we denote states of N agents at time
step t as Xt = (xt

1, . . . , x
t
i, . . . , x

t
N ), where xt

i is the state of agent i at time step t, which includes
the position and the context information. We denote the history of all agents over H observed time
steps as X =

(
X−H+1, . . . ,X0

)
. Similarly, we denote future trajectories of all N agents over T

future time steps as Y =
(

Y1, . . . ,YT
)

, where Yt = (yt1, . . . , y
t
N ) denotes the states of N agents

at a future time step t (t > 0). We denote the ground truth and the predicted future trajectories as
Y and Ŷ, respectively. A trajectory prediction model P aims to minimize the difference between
Ŷ = P(X) and Y. In an AV stack, trajectory prediction is executed repeatedly at a fixed time interval,
usually the same as ∆t. We denote Lp as the number of trajectory prediction being executed in
several past consecutive time frames. Therefore, the histories at time frame (−Lp < t ≤ 0) are

X(t) =
(

X−H−t+1, . . . ,X−t
)

, and similarly for Y and Ŷ.

Adversarial Attack Formulation. In this work, we focus on the setting where an adversary vehicle
(adv agent) attacks the prediction module of an ego vehicle by driving along an adversarial trajectory
Xadv(·). The trajectory prediction model predicts the future trajectories of both the adv agent and other
agents. The attack goal is to mislead the predictions at each time step and subsequently make the AV
plan execute unsafe driving behaviors. As illustrated in Figure 1, by driving along a carefully crafted
adversarial (history) trajectory, the trajectory prediction model predicts wrong future trajectories
for both the adv agent and the other agent. The mistakes can in term lead to severe consequences
such as collisions. In this work, we focus on the white-box threat model, where the adversary has
access to both model parameters, history trajectories and future trajectories of all agents, to explore
what a powerful adversary can do based on the Kerckhoffs’s principle [12] to better motivate defense
methods.

Challenges. The challenges of devising effective adversarial attacks against prediction modules are
two-fold: (1) Generating realistic adversarial trajectory. In AV systems, history trajectories are
generated by upstream tracking pipelines and are usually sparsely queried due to computational
constraints. On the other hand, dynamic parameters like accelerations and curvatures are high order
derivatives of position and are usually estimated by numerical differentiation requiring calculating
difference between positions within a small-time interval. Therefore, it is difficult to estimate correct
dynamic parameters from such sparsely sampled positions in the history trajectory. Without the
correct dynamic parameters, it is impossible to determine whether a trajectory is realistic or not,

3



Past Trajectory

{x,y}0 {x,y}3 {x,y}9… 

Past Trajectory

{x,y}0 {x,y}3 {x,y}9… 

Past Trajectory

{x,y}0 {x,y}3 {x,y}9… 

Stage I: Dynamic Parameters Estimation

Differentiable 
dynamic model

Control Actions

u0 u1 u9… 

History Trajectory

{x,y,v,θ}0 … {x,y,v,θ}1 {x,y,v,θ}9

Stage II: Adversarial Trajectory Generation

Differentiable 
dynamic model

Adv History Trajectory

{x,y,v,θ}0 … {x,y,v,θ}1 {x,y,v,θ}9

Initialize Initialize

Initialize

Trajectory 
(continuous)

Perceived 
History Trajectories 

(2Hz)

Predicted 
TrajectoriesControl Actions Dynamic Model Trajectory Prediction 

Model

u

t

Adv Control Actions

u0 u1 u9… 

u

t

Figure 2: Adversarial Dynamic Optimization (AdvDO) methodology overview

let alone generate new trajectories. (2) Evaluating the implications of adversarial attacks. Most
existing evaluation metrics for trajectory prediction assume benign settings and are inadequate to
demonstrate the implications for AV systems under attacks. For example, a large Average Distance
Error (ADE) in prediction does not directly entail concrete consequences such as collision. Therefore,
we need a new evaluation pipeline to systematically determine the consequences of adversarial attacks
against prediction modules to further raise the awareness of general audiences on the risk that AV
systems might face.

4 AdvDO: Adversarial Dynamic Optimization

To address the two challenges listed above, we propose Adversarial Dynamic Optimization (AdvDO).
As shown in Figure 2, given trajectory histories, AdvDO first estimates their dynamic parameters
via a differentiable dynamic model. Then we use the estimated dynamic parameters to generate a
realistic adversarial history trajectory given a benign trajectory by solving an adversarial optimization
problem. Specifically, AdvDO consists of two stages: (1) dynamic parameters estimation, and (2)
adversarial trajectory generation. In the first stage, we aim to estimate correct dynamic parameters by
reconstructing a realistic dense trajectory from a sampled trajectory from the dataset. To reconstruct
the dense trajectory, we leverage a differentiable dynamic model through optimization of control
actions. When we get the estimated correct dynamic parameters of the trajectory, it could be used for
the second stage. In the second stage, we aim to generate an adversarial trajectory that misleads future
trajectory predictions given constraints. To achieve such goal, we carefully design the adversarial
loss function with several regularization losses for the constraints. Then, we also extend the method
to attacking consecutive predictions.

4.1 Dynamic Parameters Estimation

Differentiable dynamic model. A dynamic model computes the next state st+1 =
{pt+1, θt+1, vt+1} given current state st = {pt, θt, vt} and control actions ut = {at, κt}. Here,
p, θ, v, a, κ represent position, heading, speed, acceleration and curvature correspondingly. We adopt
the kinematic bicycle model as the dynamic model which is commonly used [13]. We calculate the
next state with a differential method, e.g., vt+1 = vt + at ·∆t where ∆t denotes the time difference
between two time steps. Given a sequence of control actions u = (u0, . . . , ut) and the initial state
s0, we denote the dynamic model as a differentiable function Φ such that it can calculate a sequence
of future states s = (s0, . . . , st) = Φ(s0, u; ∆t). Noticed that the dynamic model also provides a
reverse function Φ−1 that calculate a sequence of dynamic parameters {θ, v, a, κ} = Φ−1(p; ∆t)
given a trajectory p = (p0, . . . , pt). This discrete system can approximate the linear system in the
real world when using a sufficiently small enough ∆t. It can be also demonstrated that the dynamic
model approximates better using a smaller ∆t.

Optimization-based trajectory reconstruction. To accurately estimate the dynamic parameters
{θ, v, a, κ} given a trajectory p, a small time difference ∆t or a large sampling rates f = 1/∆t is
required. However, the sampling rate of the trajectory in the trajectory prediction task is decided by
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the AV stack, and is often small (e.g. 2Hz for nuScenes [9]) limited by the computation performance
of the hardware. Therefore, directly estimating the dynamic parameters from the sampled trajectory
is not accurate, making it difficult to determine whether the adversarial history Xadv generated
by perturbing the history trajectory provided by the AV system is realistic or not. To resolve this
challenge, we propose to reconstruct a densely trajectory first and then estimate a more accurate
dynamic parameter from the reconstructed dense trajectory. To reconstruct a densely sampled history
trajectory Di =

(
D−H·f+1

i , . . . ,D0
i

)
from a given history trajectory Xi with additional sampling

rates f , we need to find a realistic trajectory Di that passes through positions in Xi. We try to find it
through solving an optimization problem. In order to efficiently find a realistic trajectory, we wish
to optimize over the control actions in stead of the positions in Di. To start with, we initialize Di

with a simple linear interpolation of Xi, i.e. D−t·f+j
i = (1 − j/f) · X−t + j/f · X−t+1. We then

calculate the dynamic parameters for all steps {θ, v, a, κ} = Φ−1(Di; ∆t). Now, we can represent
the reconstructed densely sampled trajectory Di with Φ(s0, u; ∆t), where u = {a, κ}. To further
reconstruct a realistic trajectory, we optimize over the control actions u with a carefully designed
reconstruction loss function Lrecon. The reconstruction loss function consists of two terms. We first
include a MSE (Mean Square Error) loss to enforce the reconstructed trajectory passing through
the given history trajectory Xi. We also include ldyn, a regularization loss based on a soft clipping
function to bound the dynamic parameters in a predefined range based on vehicle dynamics [13]. To
summarize, by solving the optimization problem of:

min
u

Lrecon(u; s
0,Φ) = MSE(Di,Xi) + ldyn(θ, v, a, κ)

,we reconstruct a densely sampled, dynamically feasible trajectory D*i passing through the given
history trajectory for the adversarial agent.

4.2 Adversarial Trajectory Generation

Attacking a single-step prediction. To generate realistic adversarial trajectories, we first initialize
the dynamic parameters of the adversarial agent with estimation from the previous stage, noted as
D*orig . Similarly to the optimization in the trajectory reconstruction process, we optimize the control
actions u to generate the optimal adversarial trajectories. Our adversarial optimization objective
consists of four terms. The detailed formulation for each term is in the supplementary materials.
The first term lobj represents the attack goal. As motion and social properties are essential and
unique for trajectory prediction models. Thus, our lobj has accounted for them when designed. The
second term lcol is a commonsense objective that encourages the generated trajectories to follow some
commonsense traffic rules. In this work we only consider collision avoidance [11]. The third term lbh
is a regularization loss based on a soft clipping function, given a clipping range of (−ϵ, ϵ). It bounds
the adversarial trajectories to be close to the original history trajectory Xorig. We also include ldyn to
bound the dynamic parameters. The full adversarial loss is defined as:

Ladv = lobj(Y, Ŷ) + α ·
∑
i

lcol(Dadv,X) + β · lbh(Dadv,D*orig) + γldyn(Dadv)

,where α and β are weighting factors. We then use the projected gradient descent (PGD) method [14]
to find the adversarial control actions uadv bounded by constraints (ulb, uub) attained from vehicle
dynamics.

Attacking consecutive predictions. To attack Lp consecutive frames of predictions, we aim to
generate the adversarial trajectory of length H + Lp that uniformly misleads the prediction at each
time frames. To achieve this goal, we can easily extend the formulation for attacking single-step
predictions to attack a sequence of predictions, which is useful for attacking a sequential decision
maker such as an AV planning module. Concretely, to generate the adversarial trajectories for Lp

consecutive steps of predictions formulated in§ 3, we aggregate the adversarial losses over these
frames. The objective for attacking a length of H + Lp trajectory is:

∑
t∈[−Lp,...0]

Ladv(X(t),Dadv(t),Y(t))

, where X(t),Dadv(t),Y(t) are the corresponding X,Dadv,Y at time frame t.
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5 Experiments

Our experiments seek to answer the following questions: (1) Are the current mainstream trajectory
prediction systems robust against our attacks?;(2) Are our attacks more realistic compared to other
methods?; (3) How do our attacks affect an AV prediction-planning system?; (4) Does features
designed to model motion and/or social properties affect a model’s adversarial robustness?; and (5)
Could we mitigate our attack via adversarial training?

5.1 Experimental Setting

Models. We evaluate two state-of-the-art trajectory prediction models: AgentFormer and Trajec-
tron++. As explained before, we select AgentFormer and Trajectron++ for their representative
features in modeling motion and social aspects in prediction. AgentFormer proposed a transformer-
based social interaction model which allows an agent’s state at one time to directly affect another
agent’s state at a future time. And Trajectron++ incorporates agent dynamics. Since semantic map
is an optional information for these models, we prepare two versions for each model with map and
without map.

Datasets. We follow the settings in [4, 3] and use nuScenes dataset [9], a large-scale motion prediction
dataset focusing on urban driving settings. We select history trajectory length (H = 4) and future
trajectory length (T = 12) following the official recommendation. We report results on all 150
validation scenes.

Baselines. We select the search-based attack proposed by Zhang et al. [15] as the baseline, named
search. As we mentioned earlier in § 2, the original method made two mistakes: (1) incorrect
estimated bound values for dynamic parameters and (2) incorrect choices of bounded dynamic
parameters for generating realistic adversarial trajectories. We correct such mistakes by (1) using
a set of real-world dynamic bound values [13]. and (2) bounding the curvature variable instead of
heading derivatives since curvature is linear related to steering angle. We denote this attack method
as search*. For our methods, we evaluate two variations: (1) Opt-init, where the initial dynamics (i.e
dynamics at (t = −H) time step) D−H·S+1

adv are fixed and (2) Opt-end, where the current dynamics
(t = 0) D0

adv are fixed. While Opt-end is not applicable for sequential attacks, we include Opt-end
for understanding the attack with strict bounds, since the current position often plays an important
role in trajectory prediction.

Metrics. We evaluate the attack with four metrics in the nuscenes prediction challenges: ADE/FDE,
Miss Rates (MR), Off Road Rates (ORR) [9] and their correspondence with planning-awareness
version: PI-ADE/PI-FDE, PI-MR, PI-ORR [8] where metric values are weighted by the sensitivity to
AV planning. In addition, to compare which attack method generates the most realistic adversarial
trajectories, we calculate the violation rates (VR) of the curvature bound, where VR is the ratio of the
number of adversarial trajectories violating dynamics constraints over the total number of generated
adversarial trajectories.

Implementation details. For the trajectory reconstruction, we use the Adam optimizer and set the
step number of optimization to 5. For the PGD-based attack, we set the step number to 30 for both
AdvDO and baselines. We empirically choose β = 0.1 and α = 0.3 for best results.

5.2 Main Results

Trajectory prediction under attacks. First, we compare the effectiveness of the attack methods on
prediction performances. As shown in Table 1, our proposed attack (Opt-init) causes the highest
prediction errors across all model variants and metrics. Opt-init overperforms Opt-end by a large
margin, which shows that the dynamics of the current frame play an important role in trajectory
prediction systems. Note that search proposed by Zhang et al. has a significant violation rates (VR)
over 10%. It further validates our previous claim that search generates unrealistic trajectories.

To further demonstrate the impact of the attacks on downstream pipelines like planning, here we
report prediction performance using planning-aware metrics proposed by Ivanovic et al. [8]. As
described above, these metrics consider how the predictions accuracy of surrounding agents behaviors
impact the ego’s ability to plan its future motion. Specifically, the metrics are computed from the
partial derivative of the planning cost over the predictions to estimate the sensitivity of the ego
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vehicle’s further planning. Furthermore, by aggregating weighted prediction metrics (e.g., ADE,
FDE, MR, ORR) with such sensitivity measurement, we could report planning awareness metrics
including (PI-ADE/FDE, PI-MR, PI-ORR) quantitatively. As shown in Table 1, results are consistent
with the previous results.

Table 1: Attack evaluation results on general metrics and planning aware metrics.
Model Attack ADE FDE MR ORR PI-ADE PI-FDE PI-MR PI-ORR VR

None 1.83 3.81 28.2% 4.7% 1.38 2.76 20.5% 22.8% 0
search 2.34 4.78 34.3% 6.6% 1.62 3.32 25.7% 25.2% 13%
search* 1.88 3.89 29.2% 4.8% 1.39 2.79 21.4% 23.0% 0%
Opt-end 2.23 4.54 34.5% 6.3% 1.57 3.11 23.7% 24.8% 0%

Agentformer w/ map

Opt-init 3.39 5.75 44.0% 10.4% 2.05 3.81 32.9% 29.0% 0%

None 2.20 4.82 35.0% 7.3% 1.46 3.76 26.8% 30.3% 0%
search 2.66 5.53 40.3% 8.9% 1.63 4.12 28.9% 34.2% 11%
search* 2.20 4.94 35.1% 7.4% 1.49 3.74 27.5% 31.1% 0%
Opt-end 2.54 5.54 39.3% 8.8% 1.63 4.11 28.2% 39.3% 0%

Agentformer w/o map

Opt-init 3.81 6.01 49.8% 13.3% 2.24 5.91 34.3% 41.3% 0%

None 1.88 4.10 35.1% 7.9% 1.42 2.81 26.5% 25.6% 0%
search 2.53 5.03 44.4% 9.4% 1.68 3.38 29.2% 28.3% 14%
search* 1.93 4.26 36.3% 8.3% 1.43 2.83 26.7% 27.7% 0%
Opt-end 2.48 5.57 47.5% 11.3% 1.65 3.14 27.2% 28.1% 0%

Trajectron++ w/ map

Opt-init 3.20 8.56 57.2% 15.9% 2.11 3.85 37.8% 32.7% 0%

None 2.10 5.00 41.1% 9.6% 1.76 3.20 30.9% 44.0% 0%
search 2.76 8.02 50.5% 16.1% 2.02 3.96 35.0% 49.6% 19%
search* 2.17 5.25 42.2% 10.0% 1.77 3.25 31.0% 46.8% 0%
Opt-end 2.49 7.54 49.5% 14.2% 1.95 3.55 31.6% 46.3% 0%

Trajectron++ w/o map

Opt-init 3.58 9.36 76.8% 17.8% 2.46 4.26 41.2% 53.7% 0%

Benign Search Opt-init

Adv past Adv futureBenign futureBenign past

Dynamically 
infeasible 

Behavior change

Drive straight

Cut left

Scenario 1

Scenario 2

Figure 3: Qualitative comparison of generated adversarial trajectories. We demonstrate that the
proposed AdvDO generates adversarial trajectories both realist and effective whereas the search-stats
could either generate dynamically infeasible trajectories (sharp turn on the first row) or changing the
behavior dramatically (behavior change from driving straight to swerving left on the second row).

Table 2: Quantitative comparison of generated ad-
versarial trajectories

Method search Opt-end Opt-init
∆Sensitivity 2.33 1.12 1.34

Attack fidelity analysis. Here, we aim to
demonstrate the fidelity of the generated ad-
versarial trajectories qualitatively and quantita-
tively. We show our analysis on AgentFormer
with map as a case study. In Figure 3, we vi-
sualize the adversarial trajectories generated by
search and Opt-end methods. We demonstrate
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that our method (Opt-end) can generate effec-
tive attack without changing the semantic meaning of the driving behaviors. In contrast, search either
generates unrealistic trajectories or changes the driving behaviors dramatically. For example, the
middle row shows that the adversarial trajectory generated by search takes a near 90-degree sharp
turn within a small distance range, which is dynamically feasible, whereas by our method (right
image in the first row) generates smooth and realistic adversarial trajectories. In addition, we conduct
a human study and demonstrate that only 4.4(±2.6)% of the generated adversarial trajectories are
considered rule-violating. More examples of generated adversarial trajectories and details of the
human study can be found in Appendix.

To further quantify the attack fidelity, we propose to use the sensitivity metric in [8] to measure the
degree of behavior alteration caused by the adversarial attacks. The metric is to measure the influence
of an agent’s behavior over other agents’ future trajectories. We calculate the difference of aggregated
sensitivity of non-adv agents between the benign and adversarial settings. Detailed formulation is in
Appendix. We demonstrate that our proposed attacks (Opt-init, Opt-end) cause smaller sensitivity
changes. This corroborates our qualitative analysis that our method generates more realistic attacks
at the behavior level.

Table 3: Planning results

Planner Open-loop Closed-loop
Rule-based MPC Rule-based MPC

Collisions 26/150 10/150 12/150 7/150
Off road – 43/150 – 23/150

Case studies with planners. To explicitly demonstrate the consequences of our attacks to the AV
stack, we evaluate the adversarial robustness of a prediction-planning pipeline in an end-to-end
manner. We select a subset of validation scenes and evaluate two planning algorithms, rule-based [16]
and MPC-based [17], in in two rollout settings, open-loop and closed-loop. Detailed description
for the planners can be found in Appendix. In the open-loop setting, an ego vehicle generates and
follows a 6-second plan without replanning. The closed-loop setting is to replan every 0.5 seconds.
We replay the other actors’ trajectories in both cases. For the closed-loop scenario, we conduct the
sequential attack using Lp = 6. As demonstrated in Table 3, our attacks causes the ego to collide
with other vehicles and/or leave drivable regions. We visualize a few representative cases in Figure 4.
Figure 4(a) shows the attack leads to a side collision. Figure 4(b) shows the attack misleads the
prediction and forces the AV to stop and leads to a rear-end collision. Note that no attack can lead
the rule-based planner to leave drivable regions because it is designed to keep the ego vehicle in the
middle of the lane. At the same time, we observed that attacking the rule-based planner results in
more collisions since it cannot dodge head-on collisions.

(a) Side collision (b) Rear-end collision (c) Driving off-road

Figure 4: Visualized results for planner evaluation. Ego vehicle in green, adv agent in red and other
agents in blue. The red cycle represents the collision or driving off-road consequence.

Ablation studies. We also conducted ablation studies regarding (1) attacking motion and social
properties and (2) transferability analysis. Due to the space limitation, we defer detailed contents in
Appendix
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Mitigation. To mitigate the consequences of the attacks, we use the standard mitigation method,
adversarial training [14], which has been shown as the most effective defense. As shown in Table C
in the Appendix, we find that the adversarial trained model using the search attack is much worse
than the adversarial trained model using our Opt-init attack. This can be due to unrealistic adversarial
trajectories generated by the search, which also emphasizes that generating realistic trajectory is
essential to success of improving adversarial robustness.

6 Conclusion

In this paper, we study the adversarial robustness of trajectory prediction systems. We present an
attack framework to generate realistic adversarial trajectories via a carefully-designed differentiable
dynamic model. We have shown that prediction models are generally vulnerable and certain model
designs (e.g, modeling motion and social properties simultaneously) beneficial in benign settings
may make a model more vulnerable to adversarial attacks. In addition, both motion (predicted future
trajectory of adversarial agent) and social (predicted future trajectory of other agents) properties
could be exploited by only manipulating the adversarial agent’s history trajectories. We also show
that prediction errors influence the downstream planning and control pipeline, leading to severe
consequences such as collision. We hope our study can shed light on the importance of evaluating
worst-case performance under adversarial examples and raise awareness on the types of security risks
that AV systems might face, so forth encourages robust trajectory prediction algorithms.
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A Related works

Adversarial Traffic Scenarios Generation. Adversarial traffic scenario generation is to synthesize
traffic scenarios that could potentially pose safety risks[18–21, 16]. Most prior approaches fall into
two categories. The first aims to capture traffic scenarios distributions from real driving logs using
generative models and sample adversarial cases from the distribution. For example, STRIVE [16]
learns a latent generative model of traffic scenarios and then searches for latent codes that map to
risky cases, such as imminent collisions. However, these latent codes may not correspond to real
traffic scenarios. As shown in the supplementary materials, the method generates scenarios that are
unlikely in the real world (e.g. driving on the wrong side of the road). Note that this is a fundamental
limitation of generative methods, because almost all existing datasets only include safe scenarios,
and it is hard to generate cases that are rare or non-existent in the data. For example, in Figure E, we
demonstrated from one example generated in Strive, where the adversarial agent drives in reverse
lane and violates the traffic rule, in order to collide into the AV.

Our method falls into the second category, which is to generate adversarial cases by perturbing real
traffic scenarios. The challenge is to design a suitable threat model such that the altered scenarios
remain realistic. AdvSim [13] plants adversarial agents that are optimized to jeopardize the ego
vehicles by causing collisions, uncomfortable driving, etc. Although AdvSim enforces the dynamic
feasibility of the synthesized trajectories, it uses black-box optimization which is slow and unreliable.
Our work is most similar to a very recent work [15]. However, as we will show empirically, [15] fails
to generate dynamically feasible adversarial trajectories. This is because its threat model simply uses
dataset statistics (e.g. speed, acceleration, heading, etc.) as the dynamic parameters, which are too
coarse to be used for generating realistic trajectories. For example, the maximum acceleration in
the NuScenes dataset is over 20m/s2 where the maximum acceleration for a top-tier sports car is
only around 10m/s2. In contrast, our method leverages a carefully-designed differentiable dynamic
model to estimate trajectory-wise dynamic parameters. This allows our threat model to synthesize
realistic and dynamically-feasible adversarial trajectories.

Adversarial Robustness. Deep learning models are shown to be generally vulnerable to adversarial
attacks [22–33]. There is a large body of literature on improving their adversarial robustness [34, 35,
14, 36–46]. In the AV context, many works examine on the adversarial robustness of the perception
task [47], while analyzing the adversarial robustness of trajectory forecaster [15] is rarely explored.
In this work, we focus on studying the adversarial robustness in the trajectory prediction task by
considering its unique properties including motion and social interaction.

B Method

In this section, we describe implementation and formulation details for the proposed method.
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Reverse 
lane

Figure E: Adversarial agent drives in reverse lane in adversarial scenarios generatated from Strive [16].

B.1 Differential dynamic model

The differential dynamic model Φ is devised for deriving dynamic parameters {p, v, θ} from control
actions u = {a, κ} and deriving control actions from trajectories p = (px, py). Specifically, we use a
kinematic bicycle model as the dynamic model [48]. Detailed formulation is as below:

Φ : vt+1 = at ·∆t+ vt

dθt = vt · κt

θt+1 = dθt ·∆t+ θt

pt+1
x = vt · cos θt ·∆t+ pt

pt+1
y = vt · sin θt ·∆t+ pt

Φ−1 : vt = ∥pt+1 − pt∥/∆t

θt = arctan ptx/p
t
y

at = (vt+1 − vt)/∆t

κt = dθt/vt

For the physical constraints for dynamically feasibility, we follow the standard values used in [13].

B.2 Reconstruction loss and adversarial loss

Here, we describe losses for reconstruction and generating adversarial trajectory in details:

ldyn(θ, v, a, κ) =
∑

x=θ,v,a,κ

(x− xlb)/(xub − xlb)− Sigmoid ((x− xlb)/(xub − xlb)) + 0.5

, where xub, xlb represent the hard-coded upper bound and lower bound correspondingly for the
dynamic parameter x.

lcol(Dadv,X) =
1

n− 1

n−1∑
i ̸=adv

1

∥Dadv − Xi∥+ 1
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, where n is the number of agent in the current prediction time frame.

lbh(Dadv,D*orig, ϵ) = ∥Dadv − D*orig∥/ϵ− Sigmoid (∥Dadv − D*orig∥/ϵ) + 0.5

, where ϵ is the tolerance for position deviation, which we empirically set to half lane width (1 meter).

lobj =
1

T

∑
t=1...T

∥ Yt − Ŷt ∥2

, where Ŷt is the predicted future trajectory at time t given the adversarial trajectory and Yt is the
corresponding ground truth. This loss aims to mislead the prediction by maximizing the difference
between the predicted future trajectory and ground truth.

C Experiments

In this section, we describe implementation and formulation details for the experiments.

C.1 Attack fidelity analysis

In this analysis, we aim to demonstrate the generated adversarial trajectory is realistic from both
perspectives of: (1) dynamically feasibility and (2) similar behavior as the original history trajectory.
For the first perspective, we demonstrate the results quantitatively with the Violation Rates (VR)
metric described below. For the second perspective, since it is a common challenge to measure the
behavior change quantitatively, we propose to approximate the degree of behavior change with the
Aggregated sensitivity metric described below. We also visually examine generated adversarial
trajectories in Figure F.

Violation rates. Since the violation rates metric is only suitable for the search method and on the
curvature κ parameter, we represent the VR as:

V R =
#total adv trajectories

#adv trajectories violating curvature constraints
.

Aggregated sensitivity. To approximate the behavior change quantitatively, we leverage the sensitiv-
ity concept proposed by Ivanovic et al. [8]. Sensitivity PI(Yi,Yego) of an agent’s trajectory to the
ego agent represents how much the agent’s trajectory Yi will affect the ego planning Yego. Therefore,
we can present how much the adversarial trajectory Xadv will affect other agents’ planning Xi as the
aggregated sensitivity of the adversarial agent’s trajectory to all the other agents in the scene. With a
normalization over agents nearby, we attain the aggregated sensitivity:

ΣSensitivity(Xadv,X) =
1

m

m∑
i,∥Xadv−Xi∥<ρ

PI(Xadv,Xi)

, where m represents the total number of agents nearby filtered by the distance threshold ρ, which is
empirically set to 5 meters. Therefore, we attain the metric for measuring behavior change as:

∆Sensitivity = ΣSensitivity(Xadv,X)− ΣSensitivity(Xorig,X)

Other metrics. To measure the behavior change quantitatively, we also include evaluation results
with other metrics proposed by Jekel et al. for comparing the similarity between trajectories [49],
including Dynamic Time Warping (DTW), Fréchet Distance (FD), Partial Curve Mapping (PCM),
Area and Curve Length (CL). In Table D we demonstrate that the proposed methods have lowest
error for all similarity metrics. The results are also consistent with the result on ∆sensitivity metric.

Visualization and human study. We randomly sample examples from 150 scenes in nuScene
validation data, where the adversarial trajectory generated from search that have a curvature violation
or a large ∆Sensitivity value. In Figure F, we show that the adversarial trajectory generated from
search have either behavior change or unrealistic steering rates. We also notice that, the Opt-end can
also generate adversarial trajectory that has large turning rates but dynamically feasible. Even though
the predicted results are worse under search attack when the curvature constraint if not bounded,
Opt-end achieves higher prediction errors in average scenarios. To further show that the generated
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trajectories obey traffic rules, we conduct a study where adversarial trajectories are illustrated with
map information (e.g. lane segments, road, crosswalk etc.). We select five human subjects with
driver license and show our generated trajectories to them. Out of the 50 trajectories evaluated, only
2.2(±1.3) are considered rule-violating. We conclude that the adversarial trajectory generated by our
methods are more realistic in both perspectives of dynamical feasibility and behavior changing.

AdvDO as Augmentation. Noticed that AdvDO also provides an opportunity for generating realistic
trajectories as additional data. We replace the adversarial objective with other objectives (e.g.
increasing left/right/forward/backward deviations) and generate additional data. More specifically,
the objective function consists of two components: Ldyn = Ld + γLcol , where Ld is the deviation
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objective loss, Lcol is the collision regularization loss, and γ is a weight factor to balance the
objectives. In each scene, we randomly pick a deviation objective loss Ld from the set {moving
forward, backward, left, right} for each agent. More specifically, the deviation objective loss Ld is
formulated as

Ld = (X−Xaug) d̄,

where Xaug represents the generated trajectories by perturbing the trajectories in the dataset and d̄
represents the unit vectors for the target deviation directions in the set of {moving forward, backward,
left, right}. In Table E, we demonstrate that the augmented data improves the clean performance
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Figure F: Visualization examples of generated adversarial trajectories from Opt-end and search. We
only show the adversarial agent’s trajectory in the attack scenario for clearer visualization.

Table D: Similarity between original history trajectory and
adversarial trajectory generated from search, Opt-init and
Opt-end.

Attack method DTW↓ FD↓ PCM↓ Area↓ CL↓
search 0.3558 0.2490 0.0676 0.8892 0.0003

Opt-init 0.2303 0.1429 0.0209 0.5928 0.0002
Opt-end 0.1891 0.0564 0.0210 0.3045 0.0001

Table E: Augmentation on Agent-
Former.

ADE FDE

Benign 1.83 3.81
+ aug 1.69 3.57

by 9% on ADE. This further validates that the high fidelity of the generated trajectories with the
proposed method.

C.2 Case studies with planners

Planner. In this work, to demonstrate the explicit consequences of the adversarial trajectory, we
implement two planners (including path planning and motion planning). The first one is a rule-based
planner as implemented by Rempe et al. [16]. However, we notice that this planner is enforcing
path planning along the center of lane lines which leads to insufficient path sampling through the
simulations. Therefore, though the planner naturally avoids driving off road, it is also lack of
flexibility to dodge incoming traffic. To better represent planners equipped on AV, we implement a
simple yet effective planner that uses conformal lattice [50] for sampling paths and model predictive
control (MPC) [17] for motion planning. We call this planner MPC-based planner.

Planning strategy. In this work, we consider both an open-loop and a closed-loop planning strategy.
Though for the closed-loop planning we have to replay the ground truth trajectories of other agents,
we do notice reduced collisions and driving off road consequences and consider the closed-loop
planning fashion meaningful.
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C.3 Ablation Study

Motion and social modeling. As mentioned in § 2, trajectory prediction model aims to learn (1) the
motion dynamics of each agent and (2) social interactions between agents. Here we conduct more
in-depth attack analysis with respect to these two properties. For the motion property, we introduce
a Motion metric that measures the changes of predicted future trajectory of the adversarial agent
as a result of the attack. For the social property, we hope to evaluate the influence of the attack on
the predictions of non-adv agents. Thus, we use a metric named Interaction to measure the average
prediction changes among all non-adv agents. As shown in Table F, the motion property is more
prone to attack than the interaction property. This is because perturbing the adv agent’s history
directly impacts its future, while non-adv agents are affected only through the interaction model.
We observed that our attack leads to larger Motion error for AgentFormer than for Trajectron++.
A possible explanation is that AgentFormer enables direct interactions between past and future
trajectories across all agents, making it more vunerable to attacks.

Table F: Ablation results for Motion and Interaction metrics
Model Scenarios ADE FDE MR ORR Model ADE FDE MR ORR

AgentFormer Motion 8.12 12.35 57.3% 18.6% Trajectron++ 8.75 13.27 59.6% 16.6%
Interaction 2.03 4.21 30.3% 5.1% 1.98 4.68 43.0% 8.71%

Transferability analysis. In this section, we aim to analyze the transferability of adversarial tra-
jectories generated on a source model to a unseen target model. We measure the transferability by
devising the transfer rate metric. High transfer rates indicate that the feasibility of transfer attack,
which is a more realistic black-box attack, in the real-world scenario. Transfer rate is defined as
the success degree of adversarial trajectories on target model over the success degree of them on
source model. The success degree is measured by the average percentage of increased error (on
metrics ADE/FDE/MR/ORR) with transfer attack on the target models over the increased error with
white-box attack on the source models. Here we evaluate whether the adversarial examples generated
by considering one model can be transferred to attack another model. We report transfer rate (more
details in the appendix). Results are shown in Figure G. Cell (i, j) shows the normalized transfer rate
value of adversarial examples generated against model j and evaluate on model i. We demonstrate
that the generated adversarial trajectories are highly transferable (transfer rates ≥ 77%) when sharing
the same backbone network. In addition, the generated adversarial trajectories can transfer among
different backbones as well. These results show the feasibility for black-box attacks against unseen
models in the real-world.

(a) ADE (b) FDE (c) Miss Rate (d) Off Road Rate

Figure G: Transferability heatmap. A: AgentFormer w/ map; B: & AgentFormer w/o map; C:
Trajectron++ w/ map ; D: Trajectron++ & w/o map

Attack effectiveness with different speeds As shown in Figure Ha, the higher speed traffic show
higher Miss Rates. It is reasonable since position deviations are larger in high speed traffics. We also
notice that the attack results are consistent to results in Table 1&2 in the main paper, which means
different attack methods are not restricted due to the speed constraints.

Attack effectiveness with different curvatures In Figure Hb, we notice that adversarial trajectories
are more effective in small curvature traffics. This is reasonable since small curvature traffics allow
more flexible adversarial trajectory generations. We find that Opt-end performs better than Opt-init
in small curvature traffic. This could be due to low curvature traffic being less sensitive to current
positions.
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(a) Speed ablation (b) Curvature ablation

Figure H: Ablation studies for different traffic scenes.

C.4 Mitigation

We present a preliminary mitigation methods against adversarial trajectory via adversarial training.
We notice that naive adversarial training results in noticeable degradation in benign performance
for both adversarial trained models using search and Opt-init. In Table G, we demonstrate that the
performance degradation are much smaller and even better for the adversarial trained model with
proposed method Opt-init.

Table G: Adversarial training results. The number in brackets represent the difference between the
benign model and adversarial trained model.

Model Attack ADE ↓ FDE ↓ MR ↓ ORR ↓

Benign

Benign 1.83 3.81 28.2% 4.7%
search 2.34 4.78 34.3% 6.6%
Opt-init 3.39 5.75 44.0% 10.4%

Rob-search

Benign 2.69(+0.86) 5.82(+2.01) 37.8% (+9.6%) 10.2%(+5.5%)
search 2.72(+0.38) 5.76(+0.98) 40.7%(+6.3%) 12.3%(+5.8%)
Opt-init 2.81(-0.58) 5.92(+0.17) 42.2%(-1.8%) 13.8%(+3.4%)

Rob-ours

Benign 2.38(+0.55) 5.03(+1.23) 35.1%(+6.9%) 8.1%(+3.4%)
search 2.42(+0.08) 5.25(+0.47) 36.8%(+2.5%) 9.2%(+2.6%)
Opt-init 2.54(-0.85) 5.21(-0.54) 36.4%(-7.6%) 8.9%(-1.5%)
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